YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis.

نویسندگان

  • Mande K Kumaran
  • John L Bowman
  • Venkatesan Sundaresan
چکیده

The YABBY (YAB) genes specify abaxial cell fate in lateral organs in Arabidopsis. Loss-of-function mutants in two early-expressing YAB genes, FILAMENTOUS FLOWER (FIL) and YAB3, do not exhibit vegetative phenotypes as a result of redundancy. Mutations in these genes result in the derepression of the KNOX homeobox genes SHOOTMERISTEMLESS (STM), BREVIPEDICELLUS, and KNAT2 in the leaves and in the partial rescue of stm mutants. Here, we show that fil yab3 double mutants exhibit ectopic meristem formation on the adaxial surfaces of cotyledons and leaf blades. We propose that in addition to abaxial specification, lateral organ development requires YAB function to downregulate KNOTTED homeobox genes so that meristem initiation and growth are restricted to the apex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymmetric leaves2 and Elongator, a histone acetyltransferase complex, mediate the establishment of polarity in leaves of Arabidopsis thaliana.

Leaf primordia are generated around the shoot apical meristem. Mutation of the ASYMMETRIC LEAVES2 (AS2) gene of Arabidopsis thaliana results in defects in repression of the meristematic and indeterminate state, establishment of adaxial-abaxial polarity and left-right symmetry in leaves. AS2 represses transcription of meristem-specific class 1 KNOX homeobox genes and of the abaxial-determinant g...

متن کامل

The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis

Leaf primordia are born around meristem-containing stem cells at shoot apices, grow along three axes (proximal-distal, adaxial-abaxial, medial-lateral), and develop into flat symmetric leaves with adaxial-abaxial polarity. Axis development and polarity specification of Arabidopsis leaves require a network of genes for transcription factor-like proteins and small RNAs. Here, we summarize present...

متن کامل

A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development.

YABBY and WUSCHEL-LIKE HOMEOBOX (WOX) genes have been shown to play important roles in lateral organ formation and meristem function. Here, we report the characterization of functional relationship between rice (Oryza sativa) YAB3 and WOX3 in rice leaf development. Rice YAB3 is closely related to maize (Zea mays) ZmYAB14 and Arabidopsis (Arabidopsis thaliana) FILAMENTOUS FLOWER (FIL), whereas r...

متن کامل

Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis.

Plant shoots are characterized by indeterminate growth resulting from the action of a population of stem cells in the shoot apical meristem (SAM). Indeterminacy within the SAM is specified in part by the class I knox homeobox genes. The myb domain proteins rough sheath2 (RS2) and ASYMMETRIC LEAVES1 (AS1) from maize (Zea mays) and Arabidopsis thaliana, respectively, are required to establish det...

متن کامل

ASYMMETRIC-LEAVES2 and an ortholog of eukaryotic NudC domain proteins repress expression of AUXIN-RESPONSE-FACTOR and class 1 KNOX homeobox genes for development of flat symmetric leaves in Arabidopsis

Leaf primordia form around the shoot apical meristem, which consists of indeterminate stem cells. Upon initiation of leaf development, adaxial-abaxial patterning is crucial for appropriate lateral expansion, via cellular proliferation, and the formation of flat symmetric leaves. Many genes that specify such patterning have been identified, but regulation by upstream factors of the expression of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 14 11  شماره 

صفحات  -

تاریخ انتشار 2002